Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Roles of d- and f-orbital electrons in the complexation of Eu(III) and Am(III) ions with alkyldithiophosphinic acid and alkylphosphinic acid using scalar-relativistic DFT calculations

Kaneko, Masashi; Watanabe, Masayuki; Miyashita, Sunao*; Nakashima, Satoru*

Journal of Nuclear and Radiochemical Sciences (Internet), 17, p.9 - 15, 2017/03

Density functional calculations were applied to the complexation of Eu(III) and Am(III) ions with phosphinic acid (O-donor) and dihiophosphinic acid (S-donor) from the viewpoint of the bonding nature of valence orbitals in metal ion. Two and four conformers for S-donor and O-donor complexes, respectively were optimized. Their stabilization energies by complex formation toward [M(H$$_{2}$$O)$$_{9}$$]$$^{3+}$$ were estimated. As the result, the energies reproduced the experimental Am(III)/Eu(III) selectivity that O-donor ligand preferably coordinates to Eu(III) ion, whereas S-donor ligand selectively coordinates to Am(III) ion. Focused on the bonding natures of d and f-orbital electrons, it was indicated that the d-orbital electrons in both Eu and Am complexes participate in the covalency as bonding-type nature and have the almost same contribution. Meanwhile, the contribution of the f-orbital electrons was different between Eu and Am complexes and indicated that in the case of S-donor complex, non-bonding type and bonding type contributions were observed for Eu and Am complexes, respectively and in the case of O-donor complex, bonding type and anti-bonding type contributions were observed for Eu and Am complexes, respectively. This result suggested that the bonding natures of d-orbital electrons contribute to the geometrical similarity of molecular structures for Eu and Am complexes and the bonding natures of f-orbital electrons contribute to the difference in the selectivity of Eu and Am ions.

1 (Records 1-1 displayed on this page)
  • 1